Non-Contact Sensing of Vital Signs, Physiological Perspective on Current Research and Future Research Directions

DR KANINIKI PANDA, MD (PHYSIOLOGY), ASST PROFESSOR, G.V.P.I.H.C&M.T, VISAKHAPATANAM
DR SATISH PRASAD RATH, MD (PEDIATRICS), XEROX RESEARCH CENTER INDIA
Introduction

Wearables and Apps are putting “health on the move”

Usable and clinical grade vital sign monitoring is corner stone of telemedicine.
 ◦ Too many devices
 ◦ Difficult to use
 ◦ Accuracy (medical grade)
 ◦ Expensive

If vital sign sensing can be non-intrusive as well comprehensive and integrated, this will be a great boon for telemedicine

Emergence of wearable and non-contact sensing is a good development in this step.
Non-Contact Vital Sign Monitoring

Has been tried; following are important

- Infra-red (IR) video
- Doppler radar sensor
- Ultrasound
- Laser Doppler
- Thermal imaging
- Video camera

http://cargocollective.com/guanghao_sun/Non-contact-Vital-Signs-Monitoring

http://www.ece.rice.edu/~mk28/distancePPG/

http://www.cocooncam.com/
Camera Based Vital Sign Monitoring

- Based on the principle of photoplethysmographic (PPG) imaging.
 - PPG is a non-invasive technique which detects the blood volume changes in a blood vessel, during cardiac cycle using the principle of wavelength-dependent variation in light absorption coefficient for different tissues.
 - Parameters: HR, HRV, RR, SpO2, Temperature, NIBP.

Tamura et al., Wearable photoplethysmographic sensors—past & present. Electronics, 2014
Heart Rate

Challenges and Achievements

- Movement
- Face resolution
- Region of interest (~95-99%)
- Duration of analysis
- Distance and angle between illumination source and the camera

Kumar, M. et al. Distance PPG: Robust non-contact vital signs monitoring using a camera. Biomedical optics express. 2015

Poh et al. "Non-contact, automated cardiac pulse measurements using video imaging and blind source separation," Opt. Express 18, 10762-10774 (2010);
Heart Rate Variability

- HRV detected from an ECG and the mobile phone camera were shown to agree favorably.
- But less reliable due to its vulnerability to motion artifacts.
- Conditions such as arrhythmia has been reported to be identified with accuracy of 90%
- Detection of human emotions
Respiration Rate

- Detected by camera based on the recording of skin color changes of subject’s visible video.
- Derived from pulse wave width (PWW).
- Can be derived from the different respiratory induced variation (amplitude, intensity and frequency) in PPG signal.
- Affected by motion and physiological variations and tachypnea.
- Camera based identifying pneumonia has got sensitivity and specificity of 89% and 73% *
- Thermal camera based RR

*Javadi M et al. Int J Infect Dis. 2006 Mar;10(2)
Oxygen saturation

Based on the principle of reflectance pulse oximetry.

Challenges faced by this method are:

- Motion artifact
- Calibration
- Angle changes caused by subject motion
- Spectrum of the incident illumination
- Region of interest chosen
- High correlation and accuracy for the range from 90 to 100% *

http://www.swharden.com/blog/images/2012/12/pulse-oximeter-wavelength.jpg
Blood pressure

- Smart phone camera can record blood pressure (BP) with an accuracy of 95-100%.
- Recorded from pulse transition time (PTT).
- Along with PPG it also needs ECG recording.
- Confounding factors – Vasomotor tone & pre-ejection period.
- Maximum error between the cuff method and the cuff less method was 14 mmHg.
- Systolic blood pressure was measured more accurately than diastolic blood pressure.

Utility of the Photoplethysmogram in Circulatory Monitoring Andrew Reisner, M.D.; Phillip A. Shaltis, Ph.D.; Devin McCombie; H Harry Asada, Ph.D.
Temperature

- Skin temperature behavior can be recorded with infrared thermographic imaging (IRTI).

- Correlation of IRT temperatures with the core temperature was significant but weak (r<0.45).

- Gender, age, and distance of measurement influence the accuracy of IRT temperature.

- No touch + forehead thermometer can get fast and precise temperature readings.

http://www.flir.com/flirone/content/?id=69369
http://www.catphones.com/en-gb/phones/s60-smartphone
http://www.brauntherms.com/
Practical Applications

CONSUMER GRADE/ WELLNESS

Ming-Zhe Poh, Affective Computing Group at the MIT Media Lab

Wize - Semeoticons

MEDICAL GRADE

Arrhythmia detection

senseglass

cardio

http://www.cardio.com/

cocooncam

Resp.eyer

ThermoScan
Conclusion

- Strong correlation between parameters derived from camera recordings and standard reference sensors under controlled settings.
- Democratized single sensor usable multi-parameter monitoring
- Motion, illumination, ambience, ROI dimensions remain as challenges
- SpO2, NIBP, temperature (not NIR/Thermal) need more studies
- Accuracy growing from consumer grade (wellness) to medical grade
- To start in wellness / specific clinical application
 - Static, point of care monitoring: health kiosk – Wize, Cardiio
 - Single parameter e.g. respiration rate ~ pneumonia @XRCI – Resp.eyer
 - HRV based arrhythmia screening
 - Baby wellness monitor ~ cocooncam

Physiological perspective (what to look and how to look) are going to be critical in this space